Removal of F− from Water Using Templated Mesoporous Carbon Modified with Hydrated Zirconium Oxide
نویسندگان
چکیده
منابع مشابه
Phosphate removal from water using zirconium-based mesoporous materials
The element phosphorus (P) is essential to all life (e.g. plants, animals and bacteria) and is a key ingredient in fertilizers to sustain high crop yields. However, the lifetime of exploitable reserves of natural ore deposits containing P is estimated to range from the next few decades to several hundreds of years, since P is intensively used in agriculture and other industries. The use of P yi...
متن کاملMesoporous Carbon Modified with Iron Oxide Based Magnetic Nanomaterials for Removal of Malachite Green Dye From Aqueous Solution
Mesoporous carbon (CMK-3) modified with Fe3O4 nanoparticles has been successfully synthesized and characterized by powder X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscope (SEM) and transmission electron microscopy (TEM).The results depict that the synthesized Fe-CMK-3 preserved the ordered mesoporous structure of CMK-3, and magnetic species were dispersed insi...
متن کاملmesoporous carbon modified with iron oxide based magnetic nanomaterials for removal of malachite green dye from aqueous solution
متن کامل
Naphthalene Removal From Water by Novel Mesoporous Carbon Nitride Adsorbent
Polycyclic aromatics hydrocarbons are chemical species with two to six fused benzene rings and are well-known toxic hazardous pollutants and highly potent carcinogens that can cause tumors in some organisms.1 In recent years, naphthalene contamination in water systems has drawn increasing attention. Naphthalene originates from natural and anthropogenic sources. Anthropogenic sources include eng...
متن کاملAdsorptive removal of phosphate from wastewater using mesoporous titanium oxide
The adsorption of phosphate onto mesoporous TiO2 was investigated in order to reduce phosphorus concentrations in wastewater and provide a potential mode of phosphorus recovery. Three equilibrium isotherms were used to optimize and properly describe phosphate adsorption (R > 0.95). The maximum capacity of phosphate on the adsorbent was found to be 50.4 mg/g, which indicated that mesoporous TiO2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: C — Journal of Carbon Research
سال: 2020
ISSN: 2311-5629
DOI: 10.3390/c6010013